# Genetic and Epigenetic Research on Type 2 Diabetes in Koreans

## Soo Heon Kwak, MD, PhD Seoul National University Hospital

12<sup>th</sup> October, 2018





# **CONTENTS**

I. Ethnic and Clinical Heterogeneity of Diabetes

**III. Genetic Risk Factors of T2D in Koreans** 

**IV. PAX4 Nonsynonymous Variants** 

V. GLP1R Nonsynonymous Variant

**VI. Current Epigenetic Studies** 

# **CONTENTS**

I. Ethnic and Clinical Heterogeneity of Diabetes

**III. Genetic Risk Factors of T2D in Koreans** 

**IV. PAX4 Nonsynonymous Variants** 

V. GLP1R Nonsynonymous Variant

**VI. Current Epigenetic Studies** 

## Diverse Pathophysiology of Type 2 Diabetes



- Type 2 diabetes is a heterogeneous group of disorders characterized by hyperglycemia that results from decreased insulin secretion and/or decreased insulin action
- Multiple pathophysiologic pathways and organs are involved in the development of diabetes

# **Clinical Heterogeneity of T2D**



- East Asian type 2 diabetes patients
  - $\checkmark$  are characterized by a decreased insulin secretory capacity
  - have lower BMI than European patients

## **Trajectory of Insulin Sensitivity and Insulin Secretion in 10 Years of Follow-up**



 Decreased beta cell function unable to compensate for the decreased insulin sensitivity is critical in the development of diabetes in Koreans

\*p<0.01 for 10 vs. 0 years.

## **Genetic Variant in Glucokinase**



Ohn JH and Kwak SH, et al., Lancet Diabetes and Endocrinology, Jan 2016

## **Longitudinal Change in Glucose**

| Chr  | SNP        | SNP Locus A |          |       |       | Inc    | depende | ent stuc | ly                     |                      | м                     | ETA                           | ANNOVAR                      |
|------|------------|-------------|----------|-------|-------|--------|---------|----------|------------------------|----------------------|-----------------------|-------------------------------|------------------------------|
| 0111 | ON         | LUUUS       | 7        |       | Total | Effect | SE      | AF       | Р                      | Type<br>(info)       | Weight<br>(direction) | <i>P</i><br><i>(</i> HetPVal) |                              |
| 6    | ro10047404 | 24262742    |          | KARE  | 6,122 | 0.213  | 0.046   | 0.205    | $4.53 \times 10^{-06}$ | imputed<br>(0.992)   | 10,528                | $3.64 \times 10^{-06}$        | NUDT3,RPS10-NUDT3            |
| 0    | 1510947494 | 34203743    | A/G      | GENIE | 4,406 | 0.120  | 0.068   | 0.200    | $7.96 \times 10^{-02}$ | genotyped<br>(1.000) | (++)                  | (0.1032)                      | (intronic)                   |
| 10   | ro11197950 | 06069490    |          | KARE  | 6,122 | 0.152  | 0.042   | 0.255    | $3.49\times10^{-04}$   | imputed<br>(0.996)   | 10,528                | $4.85 	imes 10^{-08}$         | PLCE1                        |
| 10   | 1511107050 | 90000400    | AG       | GENIE | 4,406 | 0.266  | 0.063   | 0.250    | $2.45\times10^{-05}$   | imputed<br>(0.996)   | (++)                  | (0.3659)                      | (intronic)                   |
|      |            | 00054040    | <b>.</b> | KARE  | 6,122 | -0.163 | 0.039   | 0.681    | $3.26 \times 10^{-05}$ | imputed<br>(0.998)   | 10,528                | $6.30 \times 10^{-06}$        | <i>MIR6085</i> (dist=18876), |
| 15   | rs2414772  | 62654213    | G/A      | GENIE | 4,406 | -0.134 | 0.058   | 0.671    | $2.14 \times 10^{-02}$ | imputed<br>(0.985)   | ()                    | (0.2719)                      | ) (intergenic)               |
| 16   | ro16050641 | 59054000    |          | KARE  | 6,122 | 0.222  | 0.068   | 0.078    | $1.09 \times 10^{-03}$ | imputed<br>(0.954)   | 10,528                | $2.46 \times 10^{-06}$        | USB1                         |
| 10   | 1510939041 | 56054099    | 0/0      | GENIE | 4,406 | 0.366  | 0.107   | 0.076    | $6.00 \times 10^{-04}$ | genotyped<br>(1.000) | (++)                  | (0.6144)                      | (exonic)                     |

Linear mixed model

$$FG_{ij} = \left[\beta_0 + \beta_1 Covariates_i + \beta_2 time_{ij} + \beta_3 SNP_i + \beta_4 SNP_i * time_{ij}\right] + \left[U_{0j} + U_{1j} time_{ij} + r_j\right] + \varepsilon_{ij}, \begin{pmatrix} r_j \\ \varepsilon_{ij} \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}\right)$$

Kwak SH, et al., Unpublished data

# **CONTENTS**

I. Ethnic and Clinical Heterogeneity of Diabetes

**III. Genetic Risk Factors of T2D in Koreans** 

**IV. PAX4 Nonsynonymous Variants** 

V. GLP1R Nonsynonymous Variant

**VI. Current Epigenetic Studies** 



## GWAS of T2D (Asian Genetic Epidemiology Network)

### Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians

Yoon Shin Cho<sup>1,46</sup>, Chien-Hsiun Chen<sup>2,3,46</sup>, Cheng Hu<sup>4,46</sup>, Jirong Long<sup>5,46</sup>, Rick Twee Hee Ong<sup>6,46</sup>, Xueling Sim<sup>7,46</sup>, Fumihiko Takeuchi<sup>8,46</sup>, Ying Wu<sup>9,46</sup>, Min Jin Go<sup>1,46</sup>, Toshimasa Yamauchi<sup>10,46</sup>, Yi-Cheng Chang<sup>11,46</sup>, Soo Heon Kwak<sup>12,46</sup>, Ronald C W Ma<sup>13,46</sup>, Ken Yamamoto<sup>14,46</sup>, Linda S Adair<sup>15</sup>, Tin Aung<sup>16,17</sup>, Qiuyin Cai<sup>5</sup>, Li-Ching Chang<sup>2</sup>, Yuan-Tsong Chen<sup>2</sup>, Yutang Gao<sup>18</sup>, Frank B Hu<sup>19</sup>, Hyung-Lae Kim<sup>1,20</sup>, Sangsoo Kim<sup>21</sup>, Young Jin Kim<sup>1</sup>, Jeannette Jen-Mai Lee<sup>22</sup>, Nanette R Lee<sup>23</sup>, Yun Li<sup>9,24</sup>, Jian Jun Liu<sup>25</sup>, Wei Lu<sup>26</sup>, Jiro Nakamura<sup>27</sup>, Eitaro Nakashima<sup>27,28</sup>, Daniel Peng-Keat Ng<sup>22</sup>, Wan Ting Tay<sup>16</sup>,

Table 1 Eight new T2D loci reaching genome-wide significance from a combined meta-analysis of stages 1, 2 and 3

|                         |         |                  |                     | Risk   | Other  | r Stage 1 (discovery) <sup>a</sup> |                       | Stage 2 ( <i>in silico</i> replication) <sup>b</sup> |                       | Stage 3 ( <i>de novo</i> | replication) <sup>c</sup> | Combined (stages              | s 1, 2 and 3) <sup>d</sup> |
|-------------------------|---------|------------------|---------------------|--------|--------|------------------------------------|-----------------------|------------------------------------------------------|-----------------------|--------------------------|---------------------------|-------------------------------|----------------------------|
| SNP                     | Chr.    | Position (bp)    | Nearby gene         | allele | allele | OR (95% CI)                        | Р                     | OR (95% CI)                                          | Р                     | OR (95% CI)              | Р                         | OR (95% CI)                   | Р                          |
| Loci showing s          | trong e | vidence of asso  | ciation with T2D    |        |        |                                    |                       |                                                      |                       |                          |                           |                               |                            |
| rs6815464               | 4       | 1,299,901        | MAEA                | С      | G      | 1.09 (1.04–1.14)                   | $8.21 \times 10^{-4}$ | 1.13 (1.07–1.20)                                     | $3.67 	imes 10^{-5}$  | 1.16 (1.11–1.20)         | $4.15 \times 10^{-15}$    | <sup>;</sup> 1.13 (1.10–1.16) | $1.57 \times 10^{-20}$     |
| rs7041847               | 9       | 4,277,466        | GLIS3               | Α      | G      | 1.09 (1.04–1.14)                   | $1.29 	imes 10^{-4}$  | 1.09 (1.03–1.15)                                     | $2.20 \times 10^{-3}$ | 1.11 (1.07–1.15)         | $2.89 	imes 10^{-9}$      | 1.10 (1.07–1.13)              | $1.99 	imes 10^{-14}$      |
| rs6017317               | 20      | 42,380,380       | FITM2-R3HDML-HNF4A  | G      | Т      | 1.10 (1.05–1.15)                   | $2.43\times10^{-5}$   | 1.07 (0.99–1.15)                                     | $8.42\times10^{-2}$   | 1.10 (1.06–1.14)         | $3.96 	imes 10^{-7}$      | 1.09 (1.07–1.12)              | $1.12 \times 10^{-11}$     |
| rs6467136               | 7       | 126,952,194      | GCC1-PAX4           | G      | А      | 1.12 (1.06–1.18)                   | $6.47 \times 10^{-5}$ | 1.11 (1.04–1.18)                                     | $2.09 \times 10^{-3}$ | 1.10 (1.05–1.15)         | $2.31\times10^{-5}$       | 1.11 (1.07–1.14)              | $4.96 \times 10^{-11}$     |
| rs831571                | 3       | 64,023,337       | PSMD6               | С      | Т      | 1.11 (1.06–1.17)                   | $4.85\times10^{-6}$   | 1.06 (1.00–1.13)                                     | $4.46 \times 10^{-2}$ | 1.08 (1.05–1.12)         | $1.41\times10^{-5}$       | 1.09 (1.06–1.12)              | $8.41 	imes 10^{-11}$      |
| rs9470794               | 6       | 38,214,822       | ZFAND3              | С      | Т      | 1.11 (1.05–1.17)                   | $1.45 \times 10^{-4}$ | 1.09 (1.02–1.17)                                     | $1.48 \times 10^{-2}$ | 1.16 (1.09–1.23)         | $3.20 \times 10^{-6}$     | 1.12 (1.08–1.16)              | $2.06 \times 10^{-10}$     |
| rs3786897               | 19      | 38,584,848       | PEPD                | А      | G      | 1.14 (1.08–1.20)                   | $3.74 \times 10^{-6}$ | 1.05 (0.99–1.12)                                     | $1.28 \times 10^{-1}$ | 1.11 (1.04–1.17)         | $5.46 \times 10^{-4}$     | 1.10 (1.07–1.14)              | $1.30 \times 10^{-8}$      |
| rs1535500               | 6       | 39,392,028       | KCNK16              | Т      | G      | 1.11 (1.06–1.16)                   | $5.34 	imes 10^{-6}$  | 1.07 (1.01–1.15)                                     | $3.33 \times 10^{-2}$ | 1.06 (1.02–1.10)         | $3.50\times10^{-3}$       | 1.08 (1.05–1.11)              | $2.30 \times 10^{-8}$      |
| Loci showing n          | nodera  | te evidence of a | ssociation with T2D |        |        |                                    |                       |                                                      |                       |                          |                           |                               |                            |
| rs16955379 <sup>e</sup> | 16      | 80,046,874       | CMIP                | С      | Т      | 1.13 (1.07–1.20)                   | $2.20\times10^{-5}$   | 1.10 (1.03–1.17)                                     | $6.59 	imes 10^{-3}$  | 1.05 (1.01–1.10)         | $2.19\times10^{-2}$       | 1.08 (1.05–1.12)              | $2.84 \times 10^{-7}$      |
| rs17797882              | 16      | 77,964,419       | WWOX                | Т      | С      | 1.12 (1.05–1.18)                   | $1.76\times10^{-4}$   | 1.09 (1.02–1.16)                                     | $1.21 \times 10^{-2}$ | 1.06 (1.01–1.11)         | $1.61\times10^{-2}$       | 1.08 (1.05–1.12)              | $9.49 	imes 10^{-7}$       |

<sup>a</sup>Up to 6,952 cases and 11,865 controls. <sup>b</sup>Up to 5,843 cases and 4,574 controls. <sup>c</sup>Up to 12,284 cases and 13,172 controls. <sup>d</sup>Up to 25,079 cases and 29,611 controls. <sup>e</sup>The proxy SNP rs9930117 (*r*<sup>2</sup> = 1) was genotyped in the stage 3 CAGE study.

## **GWAS of T2D** (comparison with Europeans)





## **Study Design**

#### Stage 1. Whole Exome Sequencing

- **619 T2D Cases** (preferentially with family history of diabetes)
- 298 Non-diabetic Controls

   (≥60 years, no 1<sup>st</sup> degree relative with diabetes)

#### Stage 2. Semi-customized Exome Genotyping Array

- 2,013 T2D Cases (preferentially with family history of diabetes)
- 1,013 Non-diabetic Controls
   (≥60 years, no 1<sup>st</sup> degree relative
   with diabetes)

#### Stage 3. In-Silico Replication

- 5,218 T2D Cases
- 7,904 Non-diabetic Controls
- CAVAS, GENIE, HEXA, KARE, KLoSHA, and SSH cohort

#### Rare, Low Frequencing Coding Variants

- N = 917
- Agilent SureSelect V4+ UTR
- Illumina HiSeq 2000 Sequencing System
- Macrogen Inc.

#### Common Variants

- N = 504, Affymetrix Human SNP array 5.0
- N = 354, Affymetrix Axiom Biobank Plus array

#### **Common Variants**

- N = 3,026
- Affymetrix Axiom Biobank Plus array
- 369,694 variants genotyped after QC
- DNA Link Inc.
- Imputation using 1,000 Genomes Project phase 3 release
- A total of 13,418,779 variants available

#### Nonsynonymous Variant

- Seven variants
- P<1.0x10<sup>-4</sup> in stage 1 + 2 analysis
- In Silico replication
- GWAS genotype and imputed variants

#### Meta-Analysis of Stage 1, 2 and 3 Results

- 7,850 T2D Cases and 9,215 Non-Diabetic Controls
- Single Variant Analysis (Firth bias-corrected likelihood ratio test)
- Gene-Based Analysis (Madsen-Browning, Burden Test, VT, SKAT)
- East Asian Specific Region Analysis
- Genetic Risk Score

144,339 Korean specific nonsynonymous variants incorporated in Stage 2

## **Clinical Characteristics of Participants**

|                             | Stage 1 who        | ole exome sequer        | ncing   | Stage 2 exome array genotyping |                                  |         |  |
|-----------------------------|--------------------|-------------------------|---------|--------------------------------|----------------------------------|---------|--|
| -                           | Type 2<br>diabetes | Non-diabetic<br>control | Р       | Type 2<br>diabetes             | Non-<br>diabetic<br>control      | Ρ       |  |
| N                           | 619                | 298                     |         | 2,013                          | 1,013                            |         |  |
| Male / Female               | 287 / 332          | 133 / 165               | 0.672   | 933 / 1080                     | 515 / 498                        | 0.021   |  |
| Age (years)                 | $56.4 \pm 9.1$     | $66.9 \pm 7.1$          | < 0.001 | $58.4 \pm 13.5$                | $65.5 \pm 8.3$                   | < 0.001 |  |
| Onset Age (years)           | $48.5\pm10.1$      | NA                      | NA      | $47.0 \pm 12.0$                | NA                               | NA      |  |
| BMI (kg/m²)                 | $24.4 \pm 2.8$     | $23.7\pm3.2$            | < 0.001 | $24.3 \pm 3.2$                 | $\textbf{23.8} \pm \textbf{3.0}$ | < 0.001 |  |
| Systolic BP (mmHg)          | $127\pm19$         | $130\pm20$              | 0.011   | $129 \pm 18$                   | $125\pm16$                       | < 0.001 |  |
| Diastolic BP (mmHg)         | $77\pm10$          | 81 ± 12                 | < 0.001 | 78 ± 11                        | $78\pm10$                        | 0.608   |  |
| HbA1c (%)                   | $8.1 \pm 1.8$      | $5.2\pm0.4$             | < 0.001 | $7.7 \pm 1.6$                  | $5.5\pm0.3$                      | < 0.001 |  |
| Fasting Glucose (mg/dl)     | $152\pm49$         | $91\pm 6$               | < 0.001 | $147\pm52$                     | $90\pm 8$                        | < 0.001 |  |
| Total cholesterol (mg/dl)   | $196\pm41$         | $199\pm33$              | 0.218   | $178\pm40$                     | $194 \pm 35$                     | < 0.001 |  |
| Triglyceride (mg/dl)        | $163 \pm 128$      | $129\pm74$              | < 0.001 | $149\pm94$                     | $118\pm65$                       | < 0.001 |  |
| HDL cholesterol (mg/dl)     | $48\pm12$          | $46\pm16$               | 0.123   | $48 \pm 14$                    | $53\pm14$                        | < 0.001 |  |
| LDL cholesterol (mg/dl)     | $118\pm33$         | $128\pm30$              | < 0.001 | $104\pm34$                     | $120\pm32$                       | < 0.001 |  |
| Insulin Treatment (%)       | 26.8 %             | NA                      | NA      | 23.8 %                         | NA                               | NA      |  |
| Lipid Medication (%)        | 21.0 %             | 0.0 %                   | < 0.001 | 27.5 %                         | 2.7 %                            | < 0.001 |  |
| Hypertension Medication (%) | 36.7 %             | 7.0 %                   | < 0.001 | 32.0 %                         | 10.0 %                           | < 0.001 |  |

Data are expressed as the mean ± S.D. or percent (%). NA, not applicable. Type 2 diabetes patients with family history of diabetes were preferentially enrolled.

### **Association results for overall common variants**

| Chr Position Ref/ |             | 0   | . –      | Meta-Analysis |                     | Whole Exome Sequencing |                     |                       | Exome Chip |               |                     |                        |            |               |
|-------------------|-------------|-----|----------|---------------|---------------------|------------------------|---------------------|-----------------------|------------|---------------|---------------------|------------------------|------------|---------------|
| Cnr               | (hg19)      | Alt | Gene     | AF            | OR 95% CI           | Р                      | OR 95% CI           | Р                     | AF<br>Case | AF<br>Control | OR 95% CI           | Р                      | AF<br>Case | AF<br>Control |
| 6                 | 20,674,691  | С/Т | CDKAL1   | 0.508         | 1.57<br>(1.42-1.74) | 1.60×10 <sup>-18</sup> | 1.88<br>(1.48-2.39) | 1.49×10 <sup>-7</sup> | 0.558      | 0.416         | 1.51<br>(1.35-1.69) | 1.39×10 <sup>-13</sup> | 0.544      | 0.431         |
| 9                 | 22,132,076  | A/G | CDKN2A/B | 0.375         | 0.68<br>(0.61-0.75) | 4.96×10 <sup>-13</sup> | 0.52<br>(0.40-0.67) | 3.25×10 <sup>-7</sup> | 0.317      | 0.457         | 0.72<br>(0.64-0.80) | 1.11×10⁻ <sup>8</sup>  | 0.350      | 0.432         |
| 11                | 2,839,751   | С/Т | KCNQ1    | 0.355         | 0.70<br>(0.63-0.78) | 4.88×10 <sup>-11</sup> | 0.74<br>(0.57-0.94) | 0.015                 | 0.321      | 0.401         | 0.69<br>(0.61-0.78) | 7.32×10 <sup>-10</sup> | 0.329      | 0.414         |
| 7                 | 127,253,550 | С/Т | PAX4     | 0.085         | 1.79<br>(1.46-2.19) | 1.60×10 <sup>-8</sup>  | 2.56<br>(1.58-4.14) | 5.18×10 <sup>-5</sup> | 0.119      | 0.056         | 1.66<br>(1.33-2.07) | 3.81×10⁻⁵              | 0.094      | 0.059         |
| 4                 | 1,244,218   | G/A | MAEA     | 0.310         | 0.74<br>(0.66-0.82) | 3.15×10 <sup>-8</sup>  | 0.85<br>(0.66-1.08) | 0.176                 | 0.297      | 0.345         | 0.72<br>(0.63-0.81) | 3.57×10⁻ <sup>8</sup>  | 0.286      | 0.356         |
| 11                | 55,966,855  | C/T | 0R5J2    | 0.056         | 0.53<br>(0.42-0.67) | 1.17×10 <sup>-7</sup>  | 0.39<br>(0.22-0.71) | 0.002                 | 0.039      | 0.062         | 0.57<br>(0.44-0.73) | 8.90×10 <sup>-6</sup>  | 0.048      | 0.076         |
| 8                 | 121,510,827 | A/G | MTBP     | 0.075         | 0.61<br>(0.50-0.73) | 1.91×10 <sup>-7</sup>  | 0.69<br>(0.43-1.10) | 0.120                 | 0.054      | 0.086         | 0.59<br>(0.48-0.73) | 6.22×10 <sup>-7</sup>  | 0.066      | 0.099         |
| 14                | 81,611,606  | C/T | TSHR     | 0.238         | 1.38<br>(1.22-1.56) | 4.33×10 <sup>-7</sup>  | 1.44<br>(1.07-1.93) | 0.016                 | 0.258      | 0.223         | 1.36<br>(1.19-1.56) | 5.83×10 <sup>-6</sup>  | 0.253      | 0.201         |

OR and *P* values are from T2D association testing results for alternative allele adjusted for age, sex, and principle components. Stage 1 and 2 association were analyzed with Firth bias-corrected likelihood ratio test. Meta-analysis was done using METAL with inverse variance weighted method under a fixed effects model. Alleles are aligned to the forward strand of the Human Genome Version 19 (hg19). Alt, alternative allele; AF, allele frequency; Chr, chromosome; CI, confidence interval; OR, odd ratio; Ref, reference allele. *Kwak SH et al., Diabetes Sep 2018* 14

### Nonsynonymous Variants of T2D (P <1.0×10<sup>-4</sup>)

| Chr | Position Ref/ Gene Variant KOR EUR |     | Meta-a               | nalysis                 | Stage 1 whole exome sequenci |       | encing              | g Stage 2 exome array genotyping |                     |           | ping      |               |                     |                       |           |               |
|-----|------------------------------------|-----|----------------------|-------------------------|------------------------------|-------|---------------------|----------------------------------|---------------------|-----------|-----------|---------------|---------------------|-----------------------|-----------|---------------|
| Chr | (hg19)                             | Alt | Gene                 | variant                 | AF                           | AF    | OR<br>(95% CI)      | Р                                | OR<br>(95% CI)      | Р         | T2D<br>AF | Control<br>AF | OR<br>(95% CI)      | Р                     | T2D<br>AF | Control<br>AF |
| 7   | 127,253,55<br>0                    | C/T | PAX4*                | rs2233580<br>Arg192His  | 0.086                        | 0.000 | 1.81<br>(1.64-2.01) | 6.36×10 <sup>-9</sup>            | 2.62<br>(1.64-4.18) | 1.73×10⁻⁵ | 0.122     | 0.057         | 1.67<br>(1.33-2.08) | 3.13×10 <sup>-6</sup> | 0.094     | 0.059         |
| 4   | 1,349,029                          | G/A | UVSSA <sup>*,†</sup> | rs2276904<br>Arg391His  | 0.376                        | 0.031 | 0.79<br>(0.75-0.84) | 1.03×10⁻⁵                        | 0.91<br>(0.72-1.15) | 0.441     | 0.363     | 0.393         | 0.77<br>(0.68-0.86) | 5.52×10 <sup>-6</sup> | 0.357     | 0.417         |
| 6   | 39,033,595                         | G/A | GLP1R <sup>*</sup>   | rs3765467<br>Arg131Gln  | 0.211                        | 0.001 | 0.77<br>(0.69-0.87) | <b>3.72</b> ×10⁻⁵                | 0.74<br>(0.55-0.98) | 0.036     | 0.196     | 0.258         | 0.78<br>(0.69-0.90) | 3.59×10 <sup>-4</sup> | 0.198     | 0.234         |
| 12  | 71,533,622                         | C/T | TSPAN8               | rs79443892<br>Gly44Ser  | 0.157                        | 0.018 | 0.76<br>(0.71-0.81) | 5.24×10 <sup>-5</sup>            | 0.68<br>(0.51-0.92) | 0.011     | 0.137     | 0.188         | 0.78<br>(0.67-0.91) | 1.21×10 <sup>-4</sup> | 0.146     | 0.183         |
| 19  | 18,123,738                         | T/C | ARRDC2               | rs7259041<br>Leu391Pro  | 0.251                        | 0.254 | 0.79<br>(0.75-0.84) | 6.19×10⁻⁵                        | 0.90<br>(0.69-1.17) | 0.424     | 0.239     | 0.268         | 0.77<br>(0.68-0.87) | 4.97×10 <sup>-5</sup> | 0.236     | 0.280         |
| 11  | 2,869,129                          | G/A | KCNQ1*               | rs1800172<br>Gly643Ser  | 0.053                        | 0.000 | 0.64<br>(0.58-0.72) | 7.51×10⁻⁵                        | 0.73<br>(0.44-1.21) | 0.217     | 0.048     | 0.055         | 0.63<br>(0.49-0.80) | 1.58×10 <sup>-4</sup> | 0.046     | 0.068         |
| 10  | 64,974,537                         | A/T | JMJD1C               | rs10761725<br>Ser464Thr | 0.430                        | 0.778 | 1.23<br>(1.17-1.30) | 8.17×10⁻⁵                        | 1.34<br>(1.05-1.71) | 0.016     | 0.460     | 0.379         | 1.21<br>(1.08-1.36) | 1.22×10 <sup>-4</sup> | 0.443     | 0.401         |

OR and *P* values are from T2D association testing results for alternative alleles adjusted for age, sex, and principle components. Stage 1 and 2 association were analysed with the Firth bias-corrected likelihood ratio test. Meta-analysis was performed using METAL with the inverse variance weighted method under a fixed effects model. Alleles are aligned to the forward strand of the Human Genome Version 19 (hg19). Alt, alternative allele; AF, allele frequency; Chr, chromosome; Cl, confidence interval; EUR, Europeans; KOR, Koreans; OR, odds ratio; Ref, reference allele. These genes are located in previously confirmed East Asian T2D GWAS regions. The genome-wide significance threshold was set to  $P < 5.0 \times 10^{-8}$ . The Bonferroni corrected significance threshold for variants located in East Asian GWAS regions was set to  $P < 6.5 \times 10^{-5}$  (0.05/770). <sup>†</sup>These two variants were in modest LD ( $r^2 = 0.24$ ).

## **Characteristics and genotyping of stage 3 studies** (N=13,122)

| Study<br>Name | N       |          | Male / Female | Age (years)                      | Body Mass<br>Index (kg/m2) | HbA1c (%)                       | Fasting Plasma<br>Glucose (mg/dl) | ) Diagnostic Criteria                                                                                           | GWAS Chip Platform          |
|---------------|---------|----------|---------------|----------------------------------|----------------------------|---------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|
| CAVAS         | 1 502   | Cases    | 374 / 435     | $58.5\pm7.2$                     | $25.3\pm3.2$               | NA                              | $146\pm54$                        | Previous diagnosis of diabetes, fasting glucose ≥ 126 mg/dL                                                     | Affymetrix Genome-          |
| CAVA5         | 1,392 - | Controls | 373 / 410     | $63.6\pm4.3$                     | $23.9\pm3.2$               | NA                              | $88\pm8$                          | No previous history of diabetes, fasting<br>glucose < 100 mg/dL                                                 | Array 6.0                   |
|               |         | Cases    | 807 / 448     | $53.0\pm10.0$                    | $23.7\pm3.1$               | $\textbf{6.2} \pm \textbf{1.0}$ | $114\pm31$                        | Clinically diagnosed as T2D using American<br>Diabetes Association criteria.                                    |                             |
| GENIE         | 3,004   | Controls | 871 / 878     | $53.4 \pm 6.5$                   | $22.5\pm2.7$               | $5.4\pm0.2$                     | $91\pm 6$                         | Age ≥ 45 years old.<br>No previous history of diabetes.<br>Fasting plasma glucose < 100 mg/dL.<br>HbA1c < 5.7%. | Korena Chip Version<br>1.0  |
|               | 3 158   | Cases    | 203 / 115     | $58.6\pm8.0$                     | $24.8\pm2.9$               | NA                              | $137\pm62$                        | Previous diagnosis of diabetes, fasting glucose ≥ 126 mg/dL                                                     | Affymetrix Genome-          |
|               | 3,130 - | Controls | 1,120 / 1,720 | $52.2\pm8.1$                     | $23.7\pm2.8$               | NA                              | $87\pm7$                          | No previous history of diabetes, fasting<br>glucose < 100 mg/dL                                                 | Array 6.0                   |
|               |         | Cases    | 1,263 / 1,153 | $63.7 \pm 9.0$                   | $24.9\pm3.4$               | $\textbf{6.7} \pm \textbf{1.3}$ | $120\pm40$                        | Clinically diagnosed as T2D using American<br>Diabetes Association criteria.                                    | Affymetrix Genome-          |
| KARE          | 4,708   | Controls | 1,006 / 1,286 | $61.7\pm8.1$                     | $24.0\pm2.9$               | $5.4\pm0.3$                     | $88\pm 6$                         | Age ≥ 60 years old.<br>No previous history of diabetes.<br>Fasting plasma glucose < 100 mg/dL.<br>HbA1c < 6.0%. | Wide Human SNP<br>Array 5.0 |
|               |         | Cases    | 47 / 42       | $75.3\pm8.2$                     | $25.6\pm3.4$               | $7.4 \pm 1.0$                   | $145\pm42$                        | Clinically diagnosed as T2D using American<br>Diabetes Association criteria.                                    | Korena Chip Version         |
| KLoSHA        | 211 -   | Controls | 80 / 42       | $\textbf{76.8} \pm \textbf{9.3}$ | $23.2\pm3.5$               | $5.5\pm0.3$                     | $90\pm 6$                         | No previous history of diabetes.<br>Fasting plasma glucose < 100 mg/dL.<br>HbA1c < 6.0%.                        | 1.1                         |
| 661           | 110     | Cases    | 200 / 131     | $52.8 \pm 10.9$                  | NA                         | $\textbf{7.8} \pm \textbf{1.9}$ | $162\pm57$                        | Hospital diagnosis based on American<br>Diabetes Association criteria.                                          | Affumotrix NSD 250K         |
| ээп           | 449 -   | Controls | 43 / 75       | 42.8 ± 10.3                      | NA                         | $5.1\pm0.3$                     | 93 ± 8                            | No previous history of diabetes, fasting glucose < 100 mg/dL, HbA1c < 5.7%.                                     |                             |

Data are expressed as the mean  $\pm$  S.D. or percent (%). NA, not applicable.

## **Validation of Nonsynonymous Variants of T2D**

| Chr | Position<br>(hg19) | Alleles<br>(Ref, Alt) | Gene   | HGVS<br>(rsID) | Korean<br>AF | European<br>AF | Study                | OR 95% CI          | Р                      | AF<br>Case | AF<br>Control |
|-----|--------------------|-----------------------|--------|----------------|--------------|----------------|----------------------|--------------------|------------------------|------------|---------------|
| 7   | 127,253,550        | С, Т                  | PAX4   | p.Arg192His    | 0.086        | 0.000          | Stage 1. WES         | 2.62 (1.64 - 4.18) | 1.73×10 <sup>-5</sup>  | 0.122      | 0.057         |
|     |                    |                       |        | (rs2233580)    |              |                | Stage 2. Exome Chip  | 1.67 (1.33 - 2.08) | 3.16×10 <sup>-6</sup>  | 0.094      | 0.059         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 1.40 (1.26 - 1.56) | 9.22×10 <sup>-10</sup> | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 1.48 (1.35 - 1.63) | 4.47×10 <sup>-16</sup> | -          | -             |
| 6   | 39,033,595         | G, A                  | GLP1R  | p.Arg131GIn    | 0.211        | 0.001          | Stage 1. WES         | 0.74 (0.55 - 0.98) | 0.036                  | 0.196      | 0.258         |
|     |                    |                       |        | (rs3765467)    |              |                | Stage 2. Exome Chip  | 0.78 (0.69 - 0.90) | 3.60×10 <sup>-4</sup>  | 0.198      | 0.234         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 0.87 (0.81 - 0.93) | 5.77×10 <sup>-5</sup>  | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 0.84 (0.80 - 0.90) | 3.55×10 <sup>-8</sup>  | -          | -             |
| 4   | 1,349,029          | G, A                  | UVSSA  | p.Arg391His    | 0.376        | 0.031          | Stage 1. WES         | 0.91 (0.72 - 1.15) | 0.441                  | 0.363      | 0.393         |
|     |                    |                       |        | (rs2276904)    |              |                | Stage 2. Exome Chip  | 0.77 (0.68 - 0.86) | 5.52×10 <sup>-6</sup>  | 0.357      | 0.417         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 0.94 (0.89 - 1.00) | 0.038                  | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 0.91 (0.86 - 0.95) | 8.36×10 <sup>-5</sup>  | -          | -             |
| 10  | 64,974,537         | Α, Τ                  | JMJD1C | p.Ser464Thr    | 0.430        | 0.778          | Stage 1. WES         | 1.34 (1.05 - 1.71) | 0.016                  | 0.460      | 0.379         |
|     |                    |                       |        | (rs10761725)   |              |                | Stage 2. Exome Chip  | 1.21 (1.08 - 1.36) | 0.001                  | 0.443      | 0.401         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 1.07 (1.01 - 1.13) | 0.014                  | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 1.11 (1.05 - 1.16) | 6.14×10 <sup>-5</sup>  | -          | -             |
| 19  | 18,123,738         | Т, С                  | ARRDC2 | p.Leu391Pro    | 0.251        | 0.254          | Stage 1. WES         | 0.90 (0.69 - 1.17) | 0.424                  | 0.239      | 0.268         |
|     |                    |                       |        | (rs7259041)    |              |                | Stage 2. Exome Chip  | 0.77 (0.68 - 0.87) | 4.97×10 <sup>-5</sup>  | 0.236      | 0.280         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 0.95 (0.89 - 1.02) | 0.149                  | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 0.91 (0.85 - 0.96) | 0.001                  |            |               |
| 11  | 2,869,129          | G, A                  | KCNQ1  | p.Gly643Ser    | 0.053        | 0.000          | Stage 1. WES         | 0.73 (0.44 - 1.21) | 0.217                  | 0.048      | 0.055         |
|     |                    |                       |        | (rs1800172)    |              |                | Stage 2. Exome Chip  | 0.63 (0.49 - 0.80) | 1.58×10 <sup>-4</sup>  | 0.046      | 0.068         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 0.99 (0.86 - 1.13) | 0.835                  | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 0.84 (0.74 - 0.95) | 0.006                  |            |               |
| 12  | 71,533,622         | С, Т                  | TSPAN8 | p.Gly44Ser     | 0.157        | 0.018          | Stage 1. WES         | 0.68 (0.51 - 0.92) | 0.011                  | 0.137      | 0.188         |
|     |                    |                       |        | (rs79443892)   |              |                | Stage 2. Exome Chip  | 0.78 (0.67 - 0.91) | 0.001                  | 0.146      | 0.183         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 1.07 (1.00 - 1.15) | 0.062                  | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 0.98 (0.92 - 1.05) | 0.582                  |            |               |

OR and *P* values are from T2D association testing results for alternative alleles adjusted for age, sex, and principle components. Stage 1, 2, and 3 association were analysed with the Firth bias-corrected likelihood ratio test. Meta-analysis was performed using METAL with the inverse variance weighted method under a fixed effects model. Alleles are aligned to the forward strand of the Human Genome Version 19 (hg19). Alt, alternative allele; AF, allele frequency; Chr, chromosome; Cl, confidence interval; EUR, Europeans; HGVS, Human Genome Variation Society nomenclature; OR, odds ratio; Ref, reference allele; rsID, dbSNP reference ID. The genome-wide significance threshold was set to  $P < 5.0 \times 10^{-8}$ .

# **CONTENTS**

I. Ethnic and Clinical Heterogeneity of Diabetes

**III. Genetic Risk Factors of T2D in Koreans** 

**IV. PAX4 Nonsynonymous Variants** 

V. GLP1R Nonsynonymous Variant

**VI. Current Epigenetic Studies** 

# PAX4 (Paired Box 4)

- Plays an important role in the differentiation and development of pancreatic islet beta cells
- Protects adult islets from stress-induced apoptosis
- Promotes differentiation and proliferation of β-cells through MafA repression
- GWAS signal near PAX4
- Reported as a MODY 9 gene in Thais





PAX4 favors  $\beta$ -cell lineage development and its absence leads to loss of  $\beta$  and  $\delta$ -cells

## **PAX4** Haplotype Association

| CHR | SNP1                       | SNP2                       | Haplotype | AA         | Group           | Frequency | OR   | Р                     |
|-----|----------------------------|----------------------------|-----------|------------|-----------------|-----------|------|-----------------------|
| 7   | rs2233580-C<br>127,253,550 | rs3824004-G<br>127,253,551 | ACG       | Arginine   | Positive Charge | 0.874     | Ref  | Ref                   |
| 7   | rs2233580-T<br>127,253,550 | rs3824004-G<br>127,253,551 | ATG       | Histidine  | Positive Charge | 0.086     | 1.81 | 6.36×10 <sup>-9</sup> |
| 7   | rs2233580-C<br>127,253,550 | rs3824004-T<br>127,253,551 | ACT       | Serine     | Polar Uncharged | 0.044     | 1.62 | 5.18×10 <sup>-4</sup> |
| 7   | rs2233580-T<br>127,253,550 | rs3824004-T<br>127,253,551 | ATT       | Asparagine | Polar Uncharged | 0.000     | -    | -                     |

LD measure for two SNPs: R-sq 0.002, D'=0.619

#### **Possible Amino Acid Changes**



## **PAX4** Diplotype Analysis

#### Amino acid variation in the PAX4 192 codon and risk of T2D

| DAV4102 and an            | Number of | T2D   |       | Non-diabe | etic control |      |             | D                      |  |
|---------------------------|-----------|-------|-------|-----------|--------------|------|-------------|------------------------|--|
| PAX4 192 CODON            | codons    | Ν     | %     | N         | %            | - UK | 95% CI      |                        |  |
| Arg/Arg                   | 0         | 1,817 | 0.723 | 1,054     | 0.831        | 1.00 | -           | -                      |  |
| Arg/His, Arg/Ser          | 1         | 635   | 0.253 | 203       | 0.160        | 1.78 | 1.49 - 2.15 | 6.79×10 <sup>-10</sup> |  |
| His/Ser, His/His, Ser/Ser | 2         | 61    | 0.024 | 11        | 0.009        | 3.23 | 1.64 - 6.35 | 6.95×10 <sup>-4</sup>  |  |

OR and *P* values are from logistic regression analysis adjusting for age and sex. Participants with Arg/Arg were used as the reference. CI, confidence interval; OR, odds ratio.

# Association of *PAX4* Arg192His variant and metabolic phenotypes in T2D participants

| PAX4 Arg192His genotype                | Arg/Arg         | Arg/His        | His/His                           |                      | р                      |
|----------------------------------------|-----------------|----------------|-----------------------------------|----------------------|------------------------|
| Ν                                      | 1,943           | 436            | 21                                | p (95% CI)           | Р                      |
| Age at diagnosis (years)               | 47.7 ± 11.7     | 46.3 ± 11.5    | 40.7 ± 9.7                        | -1.69 (-2.460.93)    | 1.55×10 <sup>-10</sup> |
| BMI (kg/m <sup>2</sup> )               | $24.4 \pm 3.19$ | $24.3\pm3.0$   | $24.6 \pm 3.8$                    | -0.05 (-0.29 - 0.30) | 0.972                  |
| Waist circumference (cm)               | $91.0\pm9.6$    | $90.4\pm9.3$   | $91.5\pm9.2$                      | -0.42 (-1.36 - 0.51) | 0.377                  |
| SBP (mmHg)                             | $129\pm18$      | $129\pm18$     | 130 ± 16                          | 0.60 (-1.10 - 2.30)  | 0.489                  |
| Fasting glucose (mg/dl)                | $147.3\pm51.3$  | $147.8\pm48.9$ | $173.5\pm56.5$                    | 2.80 (-1.98 - 7.56)  | 0.251                  |
| HbA1c (%)                              | 7.77 ± 1.61     | 7.90 ± 1.70    | $\textbf{8.06} \pm \textbf{2.11}$ | 0.13 (-0.03 - 0.28)  | 0.107                  |
| C-peptide (ng/ml)                      | 2.22 ± 1.50     | 2.06 ± 1.43    | 1.26 ± 0.55                       | -0.20 (-0.380.03)    | 0.024                  |
| Total cholesterol (mg/dl)              | 181 ± 40        | $186\pm42$     | $189\pm32$                        | 4.37 (0.53 - 8.21)   | 0.026                  |
| Triacylglyceride (mg/dl)               | 151 ± 104       | 159 ± 108      | $132\pm90$                        | 4.80 (-0.54 - 15.00) | 0.356                  |
| HDL cholesterol (mg/dl)                | 48 ± 14         | $48 \pm 13$    | $53\pm14$                         | 0.24 (-1.07 - 1.55)  | 0.718                  |
| LDL cholesterol (mg/dl)                | $115\pm36$      | $117\pm41$     | $115\pm23$                        | 2.01 (-1.73 - 5.75)  | 0.292                  |
| MDRD eGFR (ml/min/1.73m <sup>2</sup> ) | 71 ± 31         | $68 \pm 29$    | $56\pm27$                         | -3.94 (-7.090.79)    | 0.014                  |

# Effect of PAX4 variants on glucagon promoter suppression



Human glucagon promoter

\* p<0.05 (n=4)

The  $\alpha$ -TC1.9 cells were co-transfected with either 150 ng pcDNA-*PAX4* (192Arg) or pcDNA-PAX4 (192His or 192Ser) together with 300 ng pGL3-human glucagon promoter and 50 ng RSV  $\beta$ -galactosidase. Luciferase activity was measured after 48 hours of transfection. Wild type *PAX4* could suppress glucagon expression by 58%. However, both Arg192His and Arg192Ser variants showed an impaired ability to suppress glucagon compared to wild type (*P* < 0.05).

# **CONTENTS**

I. Ethnic and Clinical Heterogeneity of Diabetes

**III. Genetic Risk Factors of T2D in Koreans** 

**IV. PAX4 Nonsynonymous Variants** 

V. GLP1R Nonsynonymous Variant

**VI. Current Epigenetic Studies** 

## **Validation of Nonsynonymous Variants of T2D**

| Chr | Position<br>(hg19) | Alleles<br>(Ref, Alt) | Gene   | HGVS<br>(rsID) | Korean<br>AF | European<br>AF | Study                | OR 95% CI          | Р                      | AF<br>Case | AF<br>Control |
|-----|--------------------|-----------------------|--------|----------------|--------------|----------------|----------------------|--------------------|------------------------|------------|---------------|
| 7   | 127,253,550        | С, Т                  | PAX4   | p.Arg192His    | 0.086        | 0.000          | Stage 1. WES         | 2.62 (1.64 - 4.18) | 1.73×10 <sup>-5</sup>  | 0.122      | 0.057         |
|     |                    |                       |        | (rs2233580)    |              |                | Stage 2. Exome Chip  | 1.67 (1.33 - 2.08) | 3.16×10 <sup>-6</sup>  | 0.094      | 0.059         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 1.40 (1.26 - 1.56) | 9.22×10 <sup>-10</sup> | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 1.48 (1.35 - 1.63) | 4.47×10 <sup>-16</sup> | -          | -             |
| 6   | 39,033,595         | G, A                  | GLP1R  | p.Arg131GIn    | 0.211        | 0.001          | Stage 1. WES         | 0.74 (0.55 - 0.98) | 0.036                  | 0.196      | 0.258         |
|     |                    |                       |        | (rs3765467)    |              |                | Stage 2. Exome Chip  | 0.78 (0.69 - 0.90) | 3.60×10 <sup>-4</sup>  | 0.198      | 0.234         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 0.87 (0.81 - 0.93) | 5.77×10 <sup>-5</sup>  | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 0.84 (0.80 - 0.90) | 3.55×10 <sup>-8</sup>  | -          | -             |
| 4   | 1,349,029          | G, A                  | UVSSA  | p.Arg391His    | 0.376        | 0.031          | Stage 1. WES         | 0.91 (0.72 - 1.15) | 0.441                  | 0.363      | 0.393         |
|     |                    |                       |        | (rs2276904)    |              |                | Stage 2. Exome Chip  | 0.77 (0.68 - 0.86) | 5.52×10 <sup>-6</sup>  | 0.357      | 0.417         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 0.94 (0.89 - 1.00) | 0.038                  | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 0.91 (0.86 - 0.95) | 8.36×10 <sup>-5</sup>  | -          | -             |
| 10  | 64,974,537         | Α, Τ                  | JMJD1C | p.Ser464Thr    | 0.430        | 0.778          | Stage 1. WES         | 1.34 (1.05 - 1.71) | 0.016                  | 0.460      | 0.379         |
|     |                    |                       |        | (rs10761725)   |              |                | Stage 2. Exome Chip  | 1.21 (1.08 - 1.36) | 0.001                  | 0.443      | 0.401         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 1.07 (1.01 - 1.13) | 0.014                  | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 1.11 (1.05 - 1.16) | 6.14×10 <sup>-5</sup>  | -          | -             |
| 19  | 18,123,738         | Т, С                  | ARRDC2 | p.Leu391Pro    | 0.251        | 0.254          | Stage 1. WES         | 0.90 (0.69 - 1.17) | 0.424                  | 0.239      | 0.268         |
|     |                    |                       |        | (rs7259041)    |              |                | Stage 2. Exome Chip  | 0.77 (0.68 - 0.87) | 4.97×10 <sup>-5</sup>  | 0.236      | 0.280         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 0.95 (0.89 - 1.02) | 0.149                  | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 0.91 (0.85 - 0.96) | 0.001                  |            |               |
| 11  | 2,869,129          | G, A                  | KCNQ1  | p.Gly643Ser    | 0.053        | 0.000          | Stage 1. WES         | 0.73 (0.44 - 1.21) | 0.217                  | 0.048      | 0.055         |
|     |                    |                       |        | (rs1800172)    |              |                | Stage 2. Exome Chip  | 0.63 (0.49 - 0.80) | 1.58×10 <sup>-4</sup>  | 0.046      | 0.068         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 0.99 (0.86 - 1.13) | 0.835                  | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 0.84 (0.74 - 0.95) | 0.006                  |            |               |
| 12  | 71,533,622         | С, Т                  | TSPAN8 | p.Gly44Ser     | 0.157        | 0.018          | Stage 1. WES         | 0.68 (0.51 - 0.92) | 0.011                  | 0.137      | 0.188         |
|     |                    |                       |        | (rs79443892)   |              |                | Stage 2. Exome Chip  | 0.78 (0.67 - 0.91) | 0.001                  | 0.146      | 0.183         |
|     |                    |                       |        |                |              |                | Stage 3. Replication | 1.07 (1.00 - 1.15) | 0.062                  | -          | -             |
|     |                    |                       |        |                |              |                | Meta-Analysis        | 0.98 (0.92 - 1.05) | 0.582                  |            |               |

OR and *P* values are from T2D association testing results for alternative alleles adjusted for age, sex, and principle components. Stage 1, 2, and 3 association were analysed with the Firth bias-corrected likelihood ratio test. Meta-analysis was performed using METAL with the inverse variance weighted method under a fixed effects model. Alleles are aligned to the forward strand of the Human Genome Version 19 (hg19). Alt, alternative allele; AF, allele frequency; Chr, chromosome; Cl, confidence interval; EUR, Europeans; HGVS, Human Genome Variation Society nomenclature; OR, odds ratio; Ref, reference allele; rsID, dbSNP reference ID. The genome-wide significance threshold was set to  $P < 5.0 \times 10^{-8}$ .

## **Incretin Therapy**

- Glucagon Like Peptide (GLP)-1 Analogues
- DiPeptidyIPeptidase (DPP)-4 Inhibitors





## **GLP-1 Receptor Expression**



## Crystal structure of the GLP-1 receptor bound to a peptide agonist

doi:10.1038/nature22800







| Characteristics                   | Arginine                       | Glutamine            |
|-----------------------------------|--------------------------------|----------------------|
| Polarity                          | Positively Charged             | Polar Uncharged      |
| рН                                | Basic                          | Neutral              |
| Residue weight                    | 156                            | 128                  |
| Secondary structure<br>propensity | α indifferent<br>β indifferent | α former<br>β former |

# Association of nonsynonymous variants with glycemic traits in non-diabetic controls (N = 7,516)

| Gene  | HGVS<br>(rsID)              | Fasting Glucose            |                       | 1-hour Glucose             |                       | 2-hour Glucose             |                       | Fasting Insulin            |       | HbA1c                      |                       |
|-------|-----------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-------|----------------------------|-----------------------|
|       |                             | β<br>(95% CI)              | Ρ                     | β<br>(95% CI)              | Ρ                     | β<br>(95% CI)              | Ρ                     | β<br>(95% CI)              | Ρ     | β<br>(95% CI)              | Ρ                     |
| PAX4  | p.Arg192His<br>(rs2233580)  | 0.103<br>(0.036 - 0.170)   | 2.68×10 <sup>-3</sup> | 0.071<br>(0.004 - 0.138)   | 0.038                 | -0.038<br>(-0.105 - 0.029) | 0.263                 | 0.039<br>(-0.028 - 0.106)  | 0.258 | 0.029<br>(-0.038 - 0.096)  | 0.402                 |
| GLP1R | p.Arg131Gln<br>(rs3765467)  | -0.075<br>(-0.1140.035)    | 2.00×10 <sup>-4</sup> | -0.048<br>(-0.0880.009)    | 0.016                 | -0.052<br>(-0.0910.012)    | 0.010                 | -0.031<br>(-0.071 - 0.008) | 0.120 | -0.053<br>(-0.0930.014)    | 8.52×10 <sup>-3</sup> |
| UVSSA | p.Arg391His<br>(rs2276904)  | -0.001<br>(-0.033 - 0.032) | 0.956                 | -0.024<br>(-0.056 - 0.009) | 0.154                 | 0.009<br>(-0.023 - 0.042)  | 0.575                 | -0.018<br>(-0.051 - 0.014) | 0.274 | -0.016<br>(-0.048 - 0.017) | 0.349                 |
| JMJD1 | p.Ser464Thr<br>(rs10761725) | 0.014<br>(-0.019 - 0.046)  | 0.415                 | 0.059<br>(0.026 - 0.091)   | 3.90×10 <sup>-4</sup> | 0.047<br>(0.014 - 0.079)   | 4.62×10 <sup>-3</sup> | -0.020<br>(-0.053 - 0.012) | 0.220 | -0.005<br>(-0.037 - 0.028) | 0.783                 |

β and *P* values are from linear regression analysis for alternative alleles adjusted for age, and sex using additive genetic model. Variables were inverse normal transformed before analysis. HGVS, Human Genome Variation Society nomenclature; rsID, dbSNP reference ID.



OPEN

A genetic variant in *GLP1R* is associated with response to DPP-4 inhibitors in patients with type 2 diabetes

Eugene Han, MD<sup>a,b</sup>, Hye Sun Park, MD<sup>a</sup>, Obin Kwon, MD, PhD<sup>c</sup>, Eun Yeong Choe, MD<sup>b</sup>, Hye Jin Wang, PhD<sup>d</sup>, Yong-ho Lee, MD, PhD<sup>a,b</sup>, Sang-Hak Lee, MD, PhD<sup>b,e</sup>, Chul Hoon Kim, MD, PhD<sup>f</sup>, Lee-Kyung Kim, MD<sup>g</sup>, Soo Heon Kwak, MD, PhD<sup>g</sup>, Kyong Soo Park, MD, PhD<sup>g</sup>, Chul Sik Kim, MD, PhD<sup>h,\*</sup>, Eun Seok Kang, MD, PhD<sup>a,b,\*</sup>



Figure 1. Differences in the response rates to DPP-4 inhibitors according to baseline HbA1c and rs3765467. (A) The proportion of responders according to HbA1c and rs3765467 genotype, (B) the proportion of responders according to HbA1c and rs3765467 allele. Error bars represent 95% confidence intervals. DPP-4 = dipepdityl peptidase-4, HbA1c = glycated hemoglobin.

# Association of nonsynonymous variants with cardiovascular disease (N = 1,496)

| Gene  | HGVS (rsID)                 | CVD<br>Cases | CVD<br>Controls | CVD<br>Cases AF | CVD<br>Controls AF | OR (95% CI)        | Р     |
|-------|-----------------------------|--------------|-----------------|-----------------|--------------------|--------------------|-------|
| PAX4  | p.Arg192His<br>(rs2233580)  | 239          | 1257            | 0.125           | 0.096              | 1.30 (0.95 - 1.78) | 0.100 |
| GLP1R | p.Arg131Gln<br>(rs3765467)  | 239          | 1257            | 0.159           | 0.199              | 0.77 (0.59 - 0.99) | 0.041 |
| UVSSA | p.Arg39His<br>(rs2276904)   | 239          | 1257            | 0.370           | 0.378              | 0.97 (0.79 - 1.18) | 0.748 |
| JMJD1 | p.Ser464Thr<br>(rs10761725) | 239          | 1257            | 0.417           | 0.445              | 0.83 (0.68 - 1.02) | 0.077 |

OR and P values are from CVD association testing results for alternative alleles adjusted for age, and sex. A subset of T2D patient (N = 1,496) who's CVD event status was available from stage 1, and 2 analyses was investigated with logistic regression. CVD events included stable or unstable angina, myocardial infarction, history of percutaneous coronary intervention, coronary artery bypass surgery, ischemic or haemorrhage stroke. AF, allele frequency; CVD, cardiovascular disease; HGVS, Human Genome Variation Society nomenclature; rsID, dbSNP reference ID.



ESTABLISHED IN 1812

JULY 28, 2016

VOL. 375 NO. 4

#### Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes

 Steven P. Marso, M.D., Gilbert H. Daniels, M.D., Kirstine Brown-Frandsen, M.D., Peter Kristensen, M.D., E.M.B.A., Johannes F.E. Mann, M.D., Michael A. Nauck, M.D., Steven E. Nissen, M.D., Stuart Pocock, Ph.D., Neil R. Poulter, F.Med.Sci., Lasse S. Ravn, M.D., Ph.D., William M. Steinberg, M.D., Mette Stockner, M.D., Bernard Zinman, M.D., Richard M. Bergenstal, M.D., and John B. Buse, M.D., Ph.D., for the LEADER Steering Committee on behalf of the LEADER Trial Investigators\*



# **CONTENTS**

I. Ethnic and Clinical Heterogeneity of Diabetes

**III. Genetic Risk Factors of T2D in Koreans** 

**IV. PAX4 Nonsynonymous Variants** 

V. GLP1R Nonsynonymous Variant

**VI. Current Epigenetic Studies** 

## Microvascular Complications and Epigenetics



## **EDIC Study**

- Legacy Effect (Metabolic Memory)
- Those who had poor glycemic control during the early stage of diabetes have higher incidence of diabetic microvascular complications even after intensive glycemic control during later 10 years of diagnosis
- It is plausible that **epigenetic change ensued by hyperglycemia** could be the cause of these metabolic memory

## **Intrauterine Environment (DoHAD)**



Barres R and Zierath JR, Nat Rev Endo 2017

# Infinium<sup>®</sup> MethylationEPIC BeadChip

Affordable methylome analysis meets cutting edge content.





Unique Combination of Coding Region and Enhancer-Wide Coverage, High-Throughput, and Low Cost Over 850,000 methylation sites per sample at single-nucleotide resolution Figure 4: Broader Coverage Using Infinium I and II Assay Designs— The MethylationEPIC BeadChip employs both Infinium I and Infinium II assays. Infinium I assay design employs 2 bead types per CpG locus, 1 each for the methylated and unmethylated states. The Infinium II design uses 1 bead type, with the methylated state determined at the single base extension step after hybridization.

### Intrauterine Exposure to Maternal Hyperglycemia and DNA Methylation Change



# Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study

John C Chambers\*, Marie Loh\*, Benjamin Lehne\*, Alexander Drong\*, Jennifer Kriebel\*, Valeria Motta\*, Simone Wahl, Hannah R Elliott, Federica Rota, William R Scott, Weihua Zhang, Sian-Tsung Tan, Gianluca Campanella, Marc Chadeau-Hyam, Loic Yengo, Rebecca C Richmond, Martyna Adamowicz-Brice, Uzma Afzal, Kiymet Bozaoglu, Zuan Yu Mok, Hong Kiat Ng, François Pattou, Holger Prokisch, Michelle Ann Razario, Letizia Tarantini, James Abbott, Mika Ala-Korpela, Benedetta Albetti, Ole Ammerpohl, Pier Alberto Bertazzi, Christine Blancher, Robert Caiazzo, John Danesh, Tom R Gaunt, Simon de Lusignan, Christian Gieger, Thomas Illig, Sujeet Jha, Simon Jones, Jeremy Jowett, Antti J Kangas, Anuradhani Kasturiratne, Norihiro Kato, Navaratnam Kotea, Sudhir Kowlessur, Janne Pitkänlemi, Prakash Punjabi, Danish Saleheen, Clemens Schafmayer, Pasi Soininen, E-Shyong Tai, Barbara Thorand, Jaakko Tuomilehto, Ananda Rajitha Wickremasinghe, Soterios A Kyrtopoulos, Timothy J Aitman, Christian Herder, Jochen Hampe, Stéphane Cauchi, Caroline L Relton, Philippe Froguel, Richie Soong, Paolo Vineis, Marjo-Riitta Jarvelin\*, James Scott\*, Harald Grallert\*, Valentina Bollati\*, Paul Elliott\*, Mark I McCarthy\*, Jaspal S Kooner\*

|            | Chromosome | Position    | Locus    | Discovery        |           | Replication      |         | Combined         |                         | P <sub>heterogeneity</sub> † |
|------------|------------|-------------|----------|------------------|-----------|------------------|---------|------------------|-------------------------|------------------------------|
|            |            |             |          | RR (95%CI)*      | pvalue    | RR (95%CI)*      | pvalue  | RR (95%CI)*      | p value                 |                              |
| cg19693031 | 1          | 145 441 552 | TXNIP    | 0-92 (0-91-0-94) | 1-0×10-11 | 0-96 (0-94-0-98) | 2-5×10* | 0-92 (0-90-0-94) | 1.5×10**                | 0-98                         |
| cg09152259 | 2          | 128156114   | PROC     | 0-95 (0-93-0-97) | 9-3×10*   | 0-99 (0-97-1-01) | 0-32    | 0-95 (0-93-0-97) | 4.8×10-7                | 0-04                         |
| cg04999691 | 7          | 150 027 050 | C7orf29  | 0-95 (0-93-0-96) | 1-4×10*   | 1.00 (0.98-1.02) | 0.71    | 0-96 (0-94-0-98) | 4.8×10*                 | 0-004                        |
| cg11024682 | 17         | 17730 094   | SREBF1   | 1.06 (1.04-1.08) | 8-4×10"   | 1-03 (1-01-1-05) | 0-0054  | 1-07 (1-04-1-09) | 3-0 × 10 <sup>-10</sup> | 0-07                         |
| cg02650017 | 17         | 47 301 614  | PHOSPHO1 | 0.94 (0.92-0.96) | 2-1×10*   | 0-97 (0-95-0-99) | 0-0012  | 0-94 (0-92-0-95) | 4-1×10-17               | 0-48                         |
| cg18181703 | 17         | 76354621    | SOCS3    | 0.95 (0.93-0.97) | 2·1×10*   | 0-97 (0-95-0-99) | 0-0016  | 0-94 (0-92-0-96) | 4.7 × 10-10             | 0-76                         |
| cg06500161 | 21         | 43 65 65 87 | ABCG1    | 1.08 (1.06-1.10) | 2-2×10-** | 1.04 (1.02-1.06) | 0-00012 | 1-09 (1-07-1-11) | 1·1×10-17               | 0-32                         |

RR=relative risk. \*Associated with a 1% increase in respective methylation marker in the discovery phase (1074 Indian Asians with incident type 2 diabetes and 1590 controls), in replication testing among 1141 Europeans (377 with incident type 2 diabetes) and in combined analysis. †Heterogeneity of effect between discovery and replication.

Table 3: Association of methylation markers with future type 2 diabetes incidence

**TXNIP** gene encodes a thioredoxin-binding protein that is a member of the alpha arrestin protein family. This protein results in the accumulation of reactive oxygen species and cellular stress. Elevated TXNIP levels induce  $\beta$ -cell apoptosis, whereas TXNIP deficiency protects against type 1 and type 2 diabetes by promoting  $\beta$ -cell survival.

Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study



#### Figure 3: Targeted resequencing of the TXNIP locus by next-generation sequencing

Bars show mean methylation at the CpG sites assessed. The purple bar is the sentinel marker, as identified by epigenome-wide association analyses. The correlation track shows the correlation between methylation at each CpG site with the sentinel marker. The inset graph shows the relative risk for type 2 diabetes associated with a 1 SD reduction in methylation or methylation score for the methylation markers at the TXNIP locus identified by targeted resequencing. Results are shown for the eight individual CpG sites assayed by pyrosequencing (blue; light blue for the sentinel marker); the sentinel marker by microarray (green); and the sum of all eight methylation markers (orange). CpG=cytosine-guanine nucleotide pair.

### **Validation of DNA Methylation Markers in Koreans**





### **DNA Methylation and Degree of Hyperglycemia**



**Non-Diabetic Group** 

**T2D Group** 



## **SUMMARY**

- There are ethnic as well as individual heterogeneity in the clinical characteristics of type 2 diabetes
- There are population specific variants that could explain ethnic differences of type 2 diabetes
- Amino acid variation in *PAX4* 192 codon (p.R192H, pR192S) is an important risk factor for diabetes in Koreans
- *GLP1R* R131Q is a protective variant of type 2 diabetes which is associated with decreased fasting glucose, decreased HbA1c, and lower risk of cardiovascular disease in Koreans
- There are ongoing efforts to identify epigenetic markers that are associated with progression to diabetes

## Acknowledgement

- Seoul National University Hospital, Dept. Internal Medicine
  - Prof. Kyong Soo Park
  - Prof. Young Min Cho
  - Prof. Hye Seung Jung
- Seoul National University Bundang Hospital, Dept. Internal Medicine
  - Prof. Hak Chul Jang
  - Prof. Soo Lim
  - Prof. Sung Hee Choi
- Seoul National University College of Medicine, Dept. Biochemistry
  - Prof. Jong II Kim
  - Dr. Seung Bok Lee
  - Dr. Jee Soo Choi
- Ajou University School of Medicine, Dept. Preventive Medicine
  - Prof. Nam Han Cho
- University of Michigan, School of Public Health
  - Prof. Hyun Min Kang
- Korea National Institute of Health
  - Dr. Bong Jo Kim
  - Dr. Young Jin Kim
  - Dr. Sanghoon Moon
  - Dr. Sohee Han
- Seoul National University Boramae Medical Center, Dept. Internal Medicine
  - Prof. Min Kyong Moon
  - Prof. Bo Kyung Koo
- Seoul National University Hospital Healthcare System Gangnam Center
  - Prof. Ji Won Yoon
- Seoul National University, Dept. Statistics
  - Prof. Taesung Park
  - Dr. Sungkyoung Choi
- Funding
  - This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare (grant number: HI15C1595, HI14C0060, HI15C3131), and intramural grants from the Korea National Institute of Health (2016-NI73001-00).

# Thank You Very Much For Your Attention.