2018 International Congress of Diabetes and Metabolism

# Dietary intake and the risk of type 2 diabetes in Korea

Major of Food Science & Nutrition The Catholic University of Korea YoonJu Song

## Contents

Increasing type 2 diabetes in Asia

**2** Characteristics of Korean diet

**3** Dietary change in Korea

High carbohydrate & type 2 diabetes

Low fat intake & type 2 diabetes

6 Summary

4

5

### Increasing prevalence of type 2 diabetes in Asia

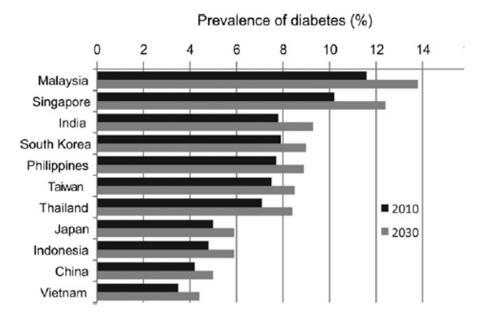



Fig. 1 – Estimated prevalence of diabetes among adults aged 20–79 years in 11 Asian countries (%). Age-adjusted to world population, except Taiwan (developed world population). Compared to other races,
 Asians develop T2DM
 younger and at a lower
 degree of obesity, suffer
 longer from its complications
 and die earlier

## **Characteristics of Korean diet**

- \* Rice as a main crop
  - ✓ Hot and humid climate with rainfall
- × A variety of food ingredients
  - $\checkmark$  abundant seafood, fish, seaweed, sea salts by a peninsular
  - $\checkmark$  rice, vegetables, fruits, beans by rich plains and valley
  - ✓ mushrooms, wild ferns, roots by mountains
  - $\checkmark$  various seasonal foods by four distinct season
- ✗ Typical forms of Korean diets
  - $\checkmark$  serve the forms of rice, soup and side dishes.
  - $\checkmark$  The combination of dishes creates the blend of color, flavors, and nutrients.

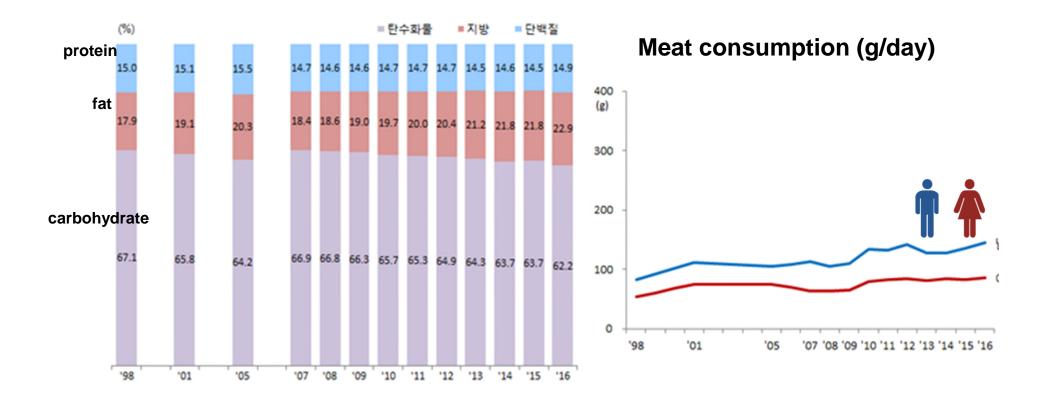




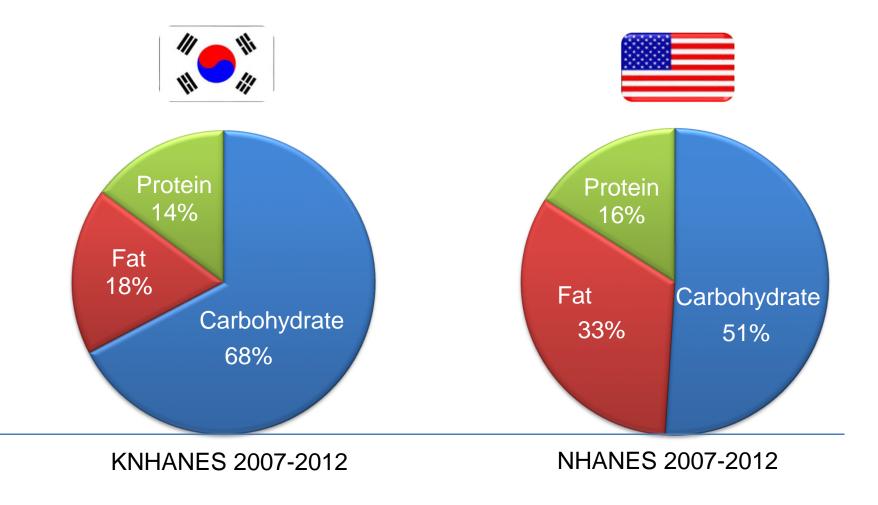






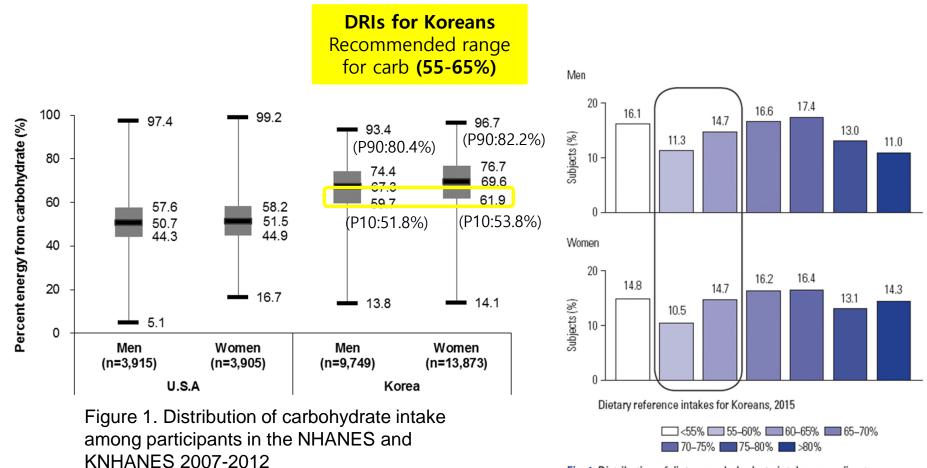

## **Dietary change in Korea**




- ✓ Westernized dietary pattern?
- ✓ Higher consumption of animal foods?
- ✓ Increasing fat intake?

### Fat and Meat consumption

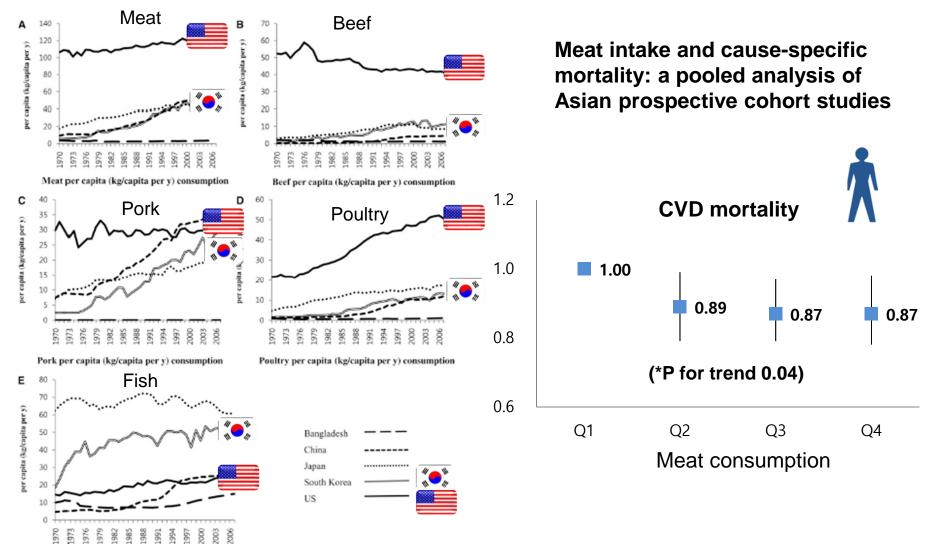
According to the data of the Korea National Health and Nutrition Survey (1998-2016),




## How different macronutrient composition?



(Ha et al, Eur J Clin Nutr, 2018)


#### **Distribution of carbohydrate intake**





(Lee et al, Yonsei Med J 2018)

### **Meat consumption**



(Lee JE, Am J Clin Nutr, 2013)

## Fat intake in US & Korea

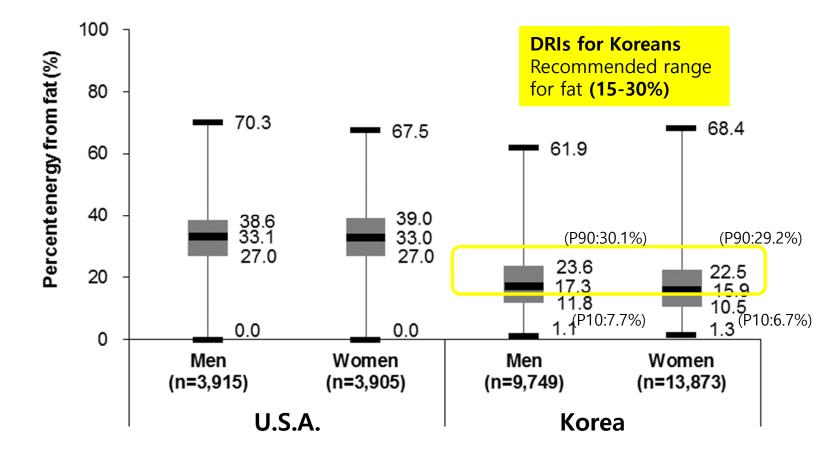
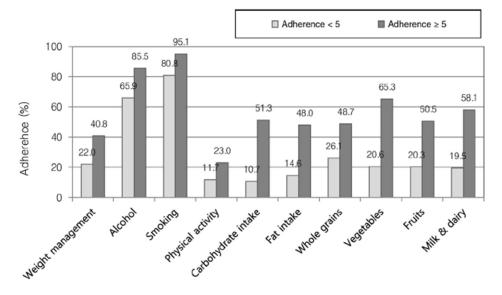




Figure 2. Distribution of fat intake among participants in the NHANES and KNHANES 2007-2012

(Ha et al, Eur J Clin Nutr, 2018)

#### DIET & TYPE 2 DIABETES IN KOREA

#### Diet and type 2 diabetes in Korea



All distributions were significantly different in both groups after adjusted for age, gender, education, income, diabetes duration, and diabetes treatment (p<0.01).

Fig. 1 – Percent adherence to each lifestyle recommendation by degree of adherence. \*the Korean Diabetes Association

- Adherence to recommendation in Korean adults who had type 2 diabetes for an average of 8 years (n=728)
- High adherence group showed better glycemic control and improved blood lipid levels
- In low adherence group,
  carbohydrate intake was the least recommendation to adhere (only 10% met the recommendation for carbohydrate)

(Lim et al, Diabetes Res Clin Pract 2013)

### **Carbohydrate quantity & quality**

- x Total carbohydrate (g/day)
- Energy from carbohydrate (%E)
- > Dietary glycemic index
- Dietary glycemic load
- × Total grains
- **×** Refined grains
- × White rice

#### **Carbohydrate & Metabolic syndrome**

#### Using KNHANES (2007-2009) data of 6,845 adults aged 30 to 65 years,

Table 5. Metabolic syndrome components by quintiles of dietary carbohydrate intake in men and women in a study examining the relationship between metabolic syndrome prevalence and dietary carbohydrate intake among Korean adults<sup>a</sup>

|                                                     | Quintiles of Energy from Carbohydrate <sup>b</sup> (%) |                 |            |            |                 | P for              |
|-----------------------------------------------------|--------------------------------------------------------|-----------------|------------|------------|-----------------|--------------------|
|                                                     | Q1 (n=526)                                             | Q2 (n=526)      | Q3 (n=527) | Q4 (n=526) | Q5 (n=526)      | trend <sup>c</sup> |
| Men (n=2,631)                                       | ←mean±standard error of mean                           |                 |            |            |                 |                    |
| Waist circumference (cm)                            | 83.8±0.4                                               | 85.4±0.4        | 84.0±0.4   | 83.3±0.4   | 83.8±0.4        | 0.066              |
| Triglyceride (mg/dL <sup>d</sup> )                  | $146.0 \pm 4.4$                                        | 164.0±7.2       | 161.0±5.5  | 153.9±5.3  | 159.2±6.1       | 0.028              |
| HDL <sup>e</sup> -cholesterol (mg/dL <sup>f</sup> ) | 46.6±0.5                                               | 44.8±0.4        | 45.2±0.4   | 45.3±0.5   | 45.1±0.5        | 0.048              |
| Fasting blood glucose (mg/dL <sup>9</sup> )         | 94.5±0.7                                               | 94.2±0.6        | 94.8±0.8   | 97.5±1.1   | 97.2±0.9        | 0.004              |
| Systolic blood pressure (mm Hg)                     | $114.9 \pm 0.5$                                        | $116.0 \pm 0.6$ | 115.3±0.6  | 115.9±0.8  | $116.1 \pm 0.7$ | 0.815              |
| Diastolic blood pressure (mm Hg)                    | 78.8±0.5                                               | 79.3±0.5        | 78.0±0.5   | 77.5±0.6   | 77.8±0.5        | 0.044              |
|                                                     |                                                        |                 |            |            |                 |                    |



|                                             | Quintiles of White Rice Intake <sup>b</sup> (Servings/Day) |                |                  |            |            |       |
|---------------------------------------------|------------------------------------------------------------|----------------|------------------|------------|------------|-------|
|                                             | Q1 (n=842)                                                 | Q2 (n=843)     | Q3 (n=843)       | Q4 (n=843) | Q5 (n=843) |       |
| Women (n=4,214)                             | ·                                                          | mean±          | standard error o | f mean     |            |       |
| Waist circumference (cm)                    | 76.5±0.4                                                   | $77.2 \pm 0.4$ | 76.7±0.3         | 77.2±0.4   | 79.0±0.4   | 0.432 |
| Triglyceride (mg/dL <sup>d</sup> )          | 96.9±2.3                                                   | 102.9±2.4      | $102.0 \pm 2.9$  | 108.6±3.2  | 109.1±2.6  | 0.053 |
| HDL cholesterol (mg/dL <sup>f</sup> )       | 52.4±0.5                                                   | $50.8 \pm 0.4$ | 51.1±0.4         | 50.1±0.4   | 49.2±0.4   | 0.002 |
| Fasting blood glucose (mg/dL <sup>9</sup> ) | 91.1±0.4                                                   | 92.0±0.4       | 92.5±0.5         | 92.9±0.5   | 93.4±0.7   | 0.059 |
| Systolic blood pressure (mm Hg)             | 107.6±0.5                                                  | 108.3±0.5      | 109.3±0.6        | 109.4±0.5  | 112.2±0.6  | 0.009 |
| Diastolic blood pressure (mm Hg)            | 71.8±0.4                                                   | $71.9 \pm 0.4$ | $71.9 \pm 0.4$   | 72.3±0.4   | 73.5±0.4   | 0.105 |

(Song et al, J Acad Nutr Diet 2014)

## White rice & type 2 diabetes

| Study                                                      | Relative risk<br>(95% CI) | Relative risk<br>(95% CI) | Intake levels<br>(g/day) |
|------------------------------------------------------------|---------------------------|---------------------------|--------------------------|
| Western population                                         | () ) !!                   | () ) / )                  | (3/)/                    |
| Nurses' Health Study                                       |                           | 1.11 (0.87 to 1.43)       | ≥112.9 v <5.3            |
| Nurses' Health Study II                                    |                           | 1.40 (1.09 to 1.80)       | ≥112.9 v <5.3            |
| Health Professionals Follow-Up Study                       | -                         | 1.02 (0.77 to 1.34)       | ≥112.9 v <5.3            |
| Melbourne Collaborative Cohort Study                       |                           | 0.93 (0.68 to 1.27)       | ≥56.0 v <23.0            |
| Subtotal: 1 <sup>2</sup> =40.0%, P=0.172                   | -                         | 1.12 (0.94 to 1.33)       |                          |
| Asian population                                           |                           |                           |                          |
| Japan Public Health Center-based Prospective Study (Men)   |                           | 1.19 (0.85 to 1.67)       | >560.0 v≤315.0           |
| Japan Public Health Center-based Prospective Study (Women) |                           | - 1.65 (1.06 to 2.57)     | ≥437.0 v≤278.0           |
| Shanghai Women's Health Study                              |                           | 1.78 (1.48 to 2.15)       | ≥750.0 v <500.0          |
| Subtotal:   <sup>2</sup> =51.6%, P=0.127                   | -                         | 1.55 (1.20 to 2.01)       |                          |
| Overall: 1 <sup>2</sup> =72.2%, P=0.001                    | -                         | 1.27 (1.04 to 1.54)       |                          |
| 0.5                                                        | 1 2                       | 3                         |                          |

Fig 2 Pooled random effects relative risk (95% CI) of type 2 diabetes comparing high with low white rice consumption levels. P values are P for heterogeneity

(Hu EA et al, BMJ 2012;344:e1454)

## Dietary carbohydrate & fat with metabolic syndrome

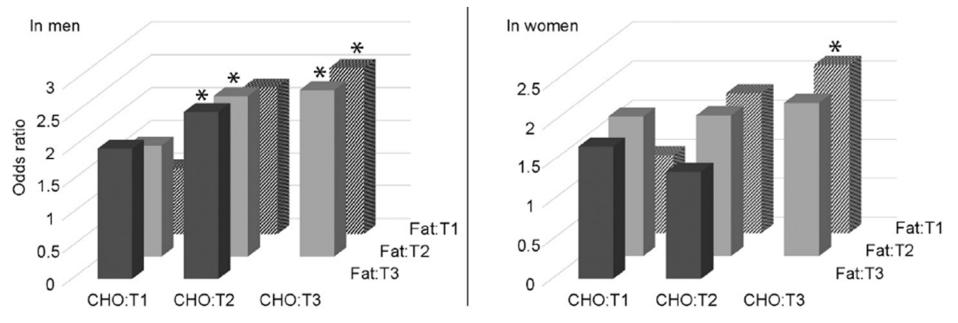
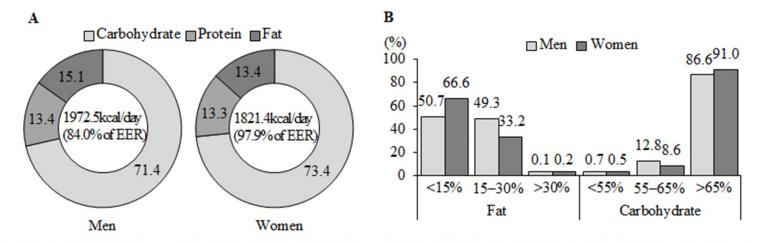
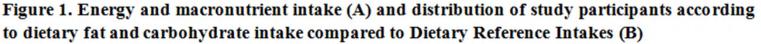



Fig 2. Adjusted odds ratios (OR) and confidence band for metabolic syndrome according to carbohydrate and fat intake.


CHO: T1 ( $\leq$ 61.0%), T2 (61.0–70.1%), and T3 ( $\geq$ 70.1%) for males and T1 ( $\leq$ 63.5%), T2 (63.5–72.8%), and T3 ( $\geq$ 72.8%) for females. Fat: T1 ( $\leq$ 15.0%), T2 (15.0–22.4%), T3 ( $\geq$ 22.4%) for males and T1 ( $\leq$ 13.3%), T2 (13.3–20.8%), and T3 ( $\geq$ 20.8%) for females.


✓ This results indicate that reduction of excessive CHO and adequate intake of fat, considering the optimal type of fat, are useful for the prevention of MS.

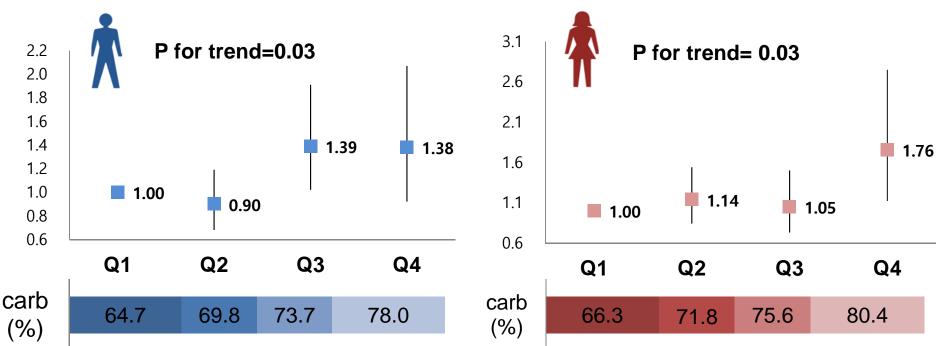
## **Dietary fat & carbohydrate**

- Based on the data from the Korean Genome and Epidemiology Study (community-based prospective cohort)
- A total of 5,595 adults aged 40-69 years without diabetes, cardiovascular diseases or any cancer at baseline
- During a median follow-up of 138-months (12 years), 1,010 cases of type 2 diabetes were newly determined.
  - ✓ Participants were enrolled during 2001–2002 and have been followed up biennially through 2013–2014
- Validated semi-quantitative food frequency questionnaire

#### **Nutrient intake**





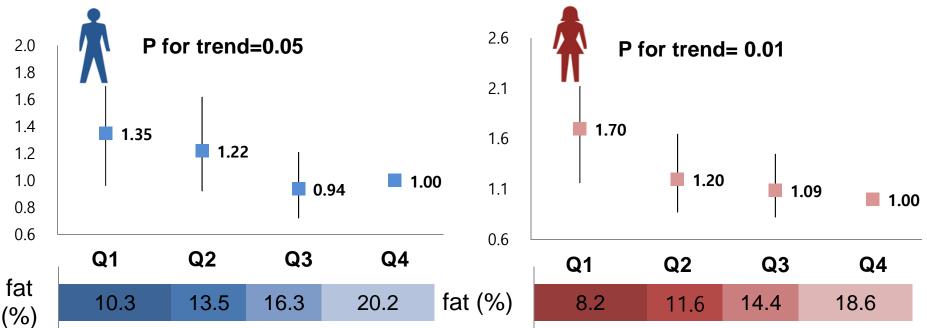

(A) EER, estimated energy requirement. Macronutrient intake is presented as percentage of total energy.

(B) According to Dietary Reference Intakes for Koreans, the acceptable macronutrient distribution range is 15-30% of total energy for fat and 55-65% of total energy for carbohydrates among adults. All values were statistically significantly different between men and women by a generalized linear model or chi-square test (p<0.05)

(Ha et al, under review)

#### Inadequate carbohydrate intake

Data from the Korean Genome and Epidemiology Study, 12y follow up, 40-69y




Adjusted for alcohol consumption, body mass index, education level, household income level, marital status, smoking status, parental history of diabetes, physical activity, residence, protein intake (% of total energy), and total energy intake (kcal/day).

 Excessive carbohydrate intake was associated with increased risks of T2DM in Korean men and women

## Inadequate fat intake

Data from the Korean Genome and Epidemiology Study, 12y follow up, 40-69y



Adjusted for alcohol consumption, body mass index, education level, household income level, marital status, smoking status, parental history of diabetes, physical activity, residence, protein intake (% of total energy), and total energy intake (kcal/day).

 Very low fat intake was associated with increased risks of T2DM in Korean men and women

(Ha et al, under review)

#### Dietary carbohydrate & food pattern

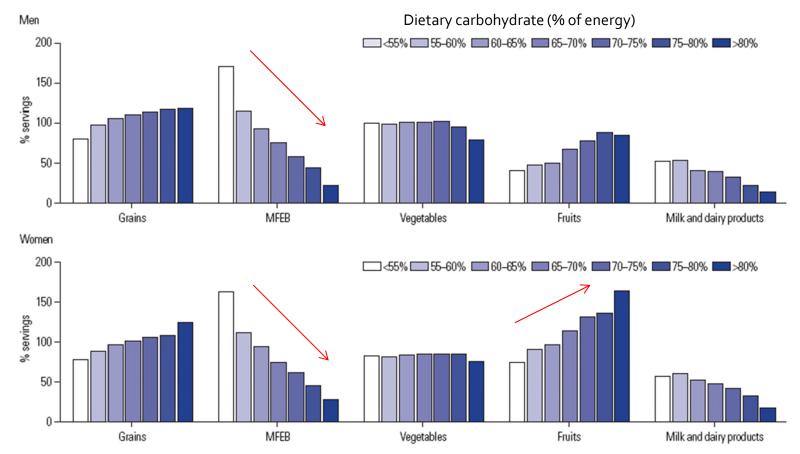



Fig. 2. Food group consumption (percentage of recommended servings) according to dietary carbohydrate intake based on the Korean Food Guidance System. % servings=the number of servings consumed/the recommended number of servings×100. MFEB, meat, fish, eggs, and beans.

Lee et al, Yonsei Med J 2018

## Summary

- Although nutrition transition has been paid attention in public due to rapid economic growth and adoption of western dietary pattern in Korea, high fat intake is not yet a major contributor to metabolic syndrome and type 2 diabetes in Korea, whereas very high carbohydrate intake (quantity & quality) still be an important factor.
- More longitudinal studies are needed to clarity the optimal types and amounts of carbohydrate and fat intake in the prevention and management of type 2 diabetes in Korean populations.

#### Thank you for listening